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Abstract
Versions of a lattice-gas model with kinetic constraints have been introduced to
address some problems in the physics of slowly relaxing systems, such as the
nature of the glass transition, the existence of a probability measure underlying
the aging dynamics and non-linear transport in the non-equilibrium steady state.
A short review of recent progress is given.

1. Introduction

One of the main problems in the physics of glassy systems is the identification of the
microscopic mechanisms leading to slow dynamics and their relationship with a possible
underlying thermodynamic phase transition. The ubiquity of glassy behaviour in condensed
matter seems to suggest the existence of a certain degree of universality in slow relaxation
phenomena. Nevertheless, the fact that glassy behaviour is first of all a kinetic (finite-
observation-time) effect makes the glass transition problem far from trivial, from both a
computational and an experimental point of view.

The problem is conceptually important because (i) the glass state could be a new
thermodynamic phase of matter (as in the simpler case of crystals, liquid crystals etc) and (ii)
it is related to the possibility of having dynamic ergodicity breaking without a corresponding
equilibrium phase transition. On the other hand, it also has very practical interest because—
irrespective of the nature of the glass transition—one would ultimately like to be able to predict
the behaviour of a sample without needing to know too many details about its history.

In statistical mechanics it is well known that the notion of thermal equilibrium requires
a wide timescale separation between ‘fast’ and ‘slow’ processes [1], and that it would be
useless if the observation time were too large [2]. When such a separation is possible, the
macroscopic properties of a body can be obtained by standard techniques of equilibrium
statistical mechanics. Emblematic in this respect is the solution to the puzzle of the heat capacity
of hydrogen [3]. Many substances we are used to dealing with have macroscopic properties
that change relatively quickly with the observation time: they appear solid-like on a short
timescale and liquid-like on a longer timescale, a difference which is conveniently described
in rheology through the Deborah number (relaxation time/observation time) [4,5]. Depending
on our purpose the ‘observation time’ can be very long: basalt is a liquid for the purpose of
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studying continental drift1. When the relaxation time increases with the time elapsed since the
preparation of the substance, the Deborah number acquires a further age dependence: the older
the system, the longer it takes to relax. A typical and well documented example is polymeric
plastic [6]. One can also mention amorphous magnets [7], and many other systems. The non-
equilibrium nature of these materials makes them a challenging object of study for statistical
mechanics as there is no apparent form of ergodicity underlying their dynamic evolution. This
justifies the use of abstract models which, while reproducing the qualitative behaviour of more
realistic systems, may offer a deeper insight into the microscopic nature of relaxation processes
and the basic questions related to the formulation of a thermodynamic approach.

1.1. Kinetic constraints

Since its first appearance, the nature of the singularity predicted by the mode-coupling
theory [8–11] has been much debated [12, 13]. Mean-field disordered models of structural
glasses show that the divergence of the relaxation time occurring at the glass transition is
associated with a dynamic transition whose origin is the existence of an extensive entropy of
metastable states [14,15]. On the other hand, it is usually argued that the lifetime of metastable
states in finite-dimensional short-range models cannot be infinite, since it is always possible to
nucleate a droplet of the stable phase by a thermally activated process. Therefore the dynamic
transition would be an artifact of the mean-field approximation, and in real glasses it would
be smeared out. The glassy behaviour should therefore be a more profound reflection of an
underlying complex free-energy landscape due to a non-trivial Gibbs measure. The universality
of this scenario can be explored by considering models which are finite dimensional (non-mean-
field) and do not contain any disorder or frustration in their Hamiltonian.

A generic microscopic mechanism leading to slow relaxation was introduced some time
ago by Fredrickson and Andersen [16], with the purpose of describing the cooperative be-
haviour in highly viscous liquids. It is based on kinetic rules that allow only a selection of the
possible configuration changes but are compatible with detailed balance and the Boltzmann dis-
tribution. A kinetic constraint can be so effective that there is no need to introduce a specific en-
ergetic interaction between spins. Further, in analogy with mean-field spin-glasses [38], kinetic
constraints lead to an extensive entropy of blocked configurations, which is the ultimate reason
for the slowing down of the dynamics. Blocked configurations or metastable states are thought
of here as configurations in which every spin (particle) is unable to flip (move). Models with
such kinetic constraints have been the subject of a considerable number of studies, since they
provide a schematic description of the dynamics of strong and fragile glasses [17–30]. One rea-
son for the interest in these models is that some of them appear to have ergodic–nonergodic tran-
sitions of the kind predicted by mode-coupling theory. They can therefore be useful for under-
standing whether the glass transition may have, at least in principle, a purely dynamical nature.

In this respect, it is worth distinguishing excluded-volume effects and kinetic constraints.
Excluded-volume effects occur in sterically hindered systems and correspond to the existence
of forbidden states in the configuration space of the system. For some values of thermodynamic
parameters (density, temperature) the geometry of the configuration space can induce an
unusual phase behaviour. In fact, peculiar equilibrium transitions take place in hard-core
systems, the most famous being the isotropic–nematic transition in three-dimensional systems
of thin hard rods [31] (and the most controversial being the freezing of hard spheres). They are
generally known as entropy-driven phase transitions since the entropy of the system increases
in the ordering process [32]. Kinetic constraints are different. They are non-holonomic and
correspond to forbidden transitions in configuration space. However, even if the Hamiltonian
1 I owe this example to Luca Peliti.
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of a system with kinetic constraint is trivial, the detailed balance condition does not guarantee
that such is its Gibbs measure. The convergence to the equilibrium measure is guaranteed
by the irreducibility of the Markov chain associated with the dynamic evolution. A Markov
chain is said to be irreducible if for every pair of configurations C and C′, either the transition
probability W(C, C′) is non-zero, or there is some set of intermediate configurations C1, . . . , Cn,
such that W(C, C1), W(C1, C2), . . . , W(Cn−1, Cn), W(Cn, C′) are all non-zero. In other words,
irreducibility means that any state (except for a zero-measure set in the thermodynamic limit)
is in principle accessible from any other one, while reducibility means that the configuration
space can be partitioned into sets such that the system can never get out of a set if its initial
configuration was inside that set.

The two kinds of constraint may ultimately have similar effects, such as very slow dynamics
due e.g. to a vanishing transport coefficient, but their microscopic interpretation may be rather
different.

The rest of the paper is organized as follows. In section 2 we introduce the Kob–
Andersen (KA) model in its original version. When particle exchange with a reservoir is
allowed the model is able to reproduce qualitatively many dynamic features of a class of
mean-field disordered systems thought to mimic the behaviour of real glasses. These include
history dependence, irreversibility effects, power-law approach to the asymptotic state, physical
aging, chaoticity and an effective temperature derived from fluctuation–dissipation relations.
In section 3 we present numerical support for the hypothesis that macroscopic observables
in the aging regime can be evaluated from averages over typical blocked configurations: the
corresponding Edwards measure is constructed and the predictions compared with the long-
time out-of-equilibrium dynamics. In particular, the connection of the fluctuation–dissipation
effective temperatures with the entropy of blocked configurations will appear. Finally, in
section 4 we show how to obtain some dynamic features, such as the relaxation exponent,
aging and density profiles, from a non-linear diffusion model. The approach also allows
the analytical investigation of the non-equilibrium stationary states generated by a chemical
potential difference and predicts peculiar non-linear transport properties.

2. The Kob–Andersen model

Our starting point is a kinetic lattice-gas model introduced by KA [20]. The system consists
of N particles in a cubic lattice of size L3, with periodic boundary conditions. There can be
at most one particle per site. Apart from this hard-core constraint there are no other static
interactions among the particles. At each time step a particle and one of its neighbouring sites
are chosen at random. The particle moves if the three following conditions are all met:

(i) the neighbouring site is empty;
(ii) the particle has less than ν nearest neighbours;

(iii) the particle will have less than ν nearest neighbours after it has moved.

The rule is symmetric in time, detailed balance is satisfied and all allowed configurations have
the same statistical weight in equilibrium. Significant results are obtained when the value of
ν is set to 4. With this simple definition one can proceed to study the dynamical behaviour of
the model at equilibrium. The kinetic constraints have the physical features associated with
the cage effect in high-density liquids. They prevent the particle from moving when it has
too many neighbours; the detailed balance condition ensures that equally the particle cannot
move if it would have too many neighbours after the move. As a consequence, the evolution
of the system slows down and becomes sluggish when the particle density ρ increases: when
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ρ approaches ρc = 0.881 the self-diffusion constant D vanishes as a power law

D(ρ) ∼ (ρc − ρ)φ (1)

with an exponent φ � 3.1 [20]. We refer the reader to the original work of KA for a detailed
description of the equilibrium dynamics results and their comparison with the predictions of
mode-coupling theory. In what follows we shall mainly be concerned with the non-equilibrium
dynamics of a version of the KA model in which particle exchange with a reservoir is allowed.
The particle reservoir is implemented by allowing creation/destruction of particles in a single
layer with the usual Monte Carlo (MC) rule: if a randomly chosen site on the layer is empty,
a new particle is added; otherwise the particle is removed with probability e−βµ. This sweep
is alternated with the ordinary diffusion sweep. In this canonical version of the model the
number of particles (which plays the role of the energy) is no longer fixed and the external
control parameter is the inverse chemical potential 1/µ, which plays the role of the temperature.

2.1. Thermodynamics

Before considering the non-equilibrium glassy regime it is important to study the static
properties of the KA model. The point is relevant for the question of whether the glass transition
is purely dynamical or is a consequence of an equilibrium transition. In the canonical version
of the model the Hamiltonian is

H = −µ

N∑
i=1

ni (2)

where ni = 0, 1 are the occupation site variables and µ is the chemical potential. The partition
function corresponding to the Hamiltonian (2) is

� = (1 + eβµ)L
3
. (3)

It would describe correctly the thermodynamics of the system provided irreducibility holds.
It is possible to convince oneself that the kinetic rules, which satisfy detailed balance, allow
an initially empty lattice to be progressively filled in, leaving only O(1/L) empty sites per
unit volume. Indeed, it is always possible to find a path connecting almost any two allowed
configurations, if necessary by letting the particles escape one by one by the way they got in.
Therefore the Markov process generated by the dynamic evolution rule is irreducible on the
configuration space and the static properties of the model are described by (3). In particular
the equation of state and the entropy are given respectively by

1/ρ = 1 + e−βµ (4)

s = −ρ log ρ − (1 − ρ) log(1 − ρ). (5)

(The values of µ and s corresponding to the threshold density ρc can be estimated from these
equations and are given by µc � 2.0, and sc � 0.35.) Since the static properties of the system
are regular functions of the density or the chemical potential, the glassy behaviour either is a
consequence of a dynamic transition or is a purely kinetic effect.

It is interesting to show irreducibility in a different ensemble in which the particle number
is fixed. This is conveniently done by coupling the particle position to an external field such
as gravity. In the presence of gravity the system is described by the Hamiltonian

H = mg

N∑
i=1

hini (6)

where g is the gravity constant, hi is the height of particle ni and m is the particle mass. In
particular, one can consider a body-centred cubic (BCC) lattice (where every site has eight
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nearest neighbours) and the value ν = 5 in the kinetic rule. In this case particles satisfying the
kinetic constraints can move according to the Metropolis rule with probability min[1, e−βg�h],
where �h = ±1 is the vertical displacement in the attempted elementary move. The Markov
process generated by the kinetic rules is irreducible on the configuration space provided that
the box height is large enough: indeed, it is always possible to find a path connecting any two
configurations by letting particles expand in the whole box. Therefore the static properties of
the model are, even in this case, those of a non-interacting lattice gas in a gravity field and the
glassy behaviour cannot be a consequence of an equilibrium phase transition.

2.2. History dependence and Kauzmann’s paradox

The introduction of particle exchange with a reservoir allows the investigation of the non-
equilibrium dynamics in the glassy phases of the KA model [23]. This can be done by letting
the inverse chemical potential 1/µ decrease or increase smoothly as in cooling or heating
experiments. The situation becomes analogous to the canonical case in which one controls
the temperature, and the energy tries to reach its equilibrium value. In close resemblance to
the behaviour of real glasses one obtains curves which exhibit the characteristic annealing-rate
dependence of one-time observables. When the relaxation time of the system exceeds the
inverse of the annealing rate r , the dynamics become so sluggish that the system is no longer
able to keep the pace of the annealing procedure. The faster the compression, the sooner the
system falls out of equilibrium [23]. In particular, when one performs a loop in the chemical
potential, the density appears to follow a hysteresis cycle (the ‘reheating’ branch crossing the
equilibrium curve) whose area decreases as the annealing rate decreases [35]. As is usually
done in experiments, once the experimental equation of state is obtained, one can then evaluate
the entropy variation of the reservoir by numerical integration, which is given by

s(µf) = s(µi) − β

∫ µf

µi

µ
dρ

dµ
dµ. (7)

In the absence of irreversibility effects this calorimetric entropy is equal to the thermodynamic
one. In figure 1 we see that when the relaxation time exceeds the inverse of the annealing
rate the numerical data depart from the equilibrium curve. The point where this first happens
defines the laboratory glass transition, 1/µg(r). It is instructive to consider the hypothetical
situation in which the annealing rate of the experiment approaches zero. In this limit and in
the absence of a dynamic transition, the entropy data would follow the equilibrium curve even
below the threshold entropy sc = s(ρc) � 0.35. One then would feel tempted to extrapolate the
value of 1/µg(r) to some non zero Kauzmann ‘temperature’ 1/µK, unless one is able to reach
exceedingly low annealing rates (see figure 1). According to this argument, generally known
as Kauzmann’s paradox, a thermodynamic phase transition at a finite 1/µK would intervene to
prevent the entropy from becoming negative. Here there is no clear signature of such a static
transition: in this simple case we have access to the complete equilibrium curves, which are
perfectly analytical even though they change concavity rather sharply. This provides a simple
example of how the distinction between the ideal (static or dynamic) and the laboratory (i.e.
kinetic) glass transition can be very subtle and elusive.

2.3. Structural relaxation

We now turn to the study of the non-equilibrium behaviour of the system after a sudden subcrit-
ical quench, which is represented here by a jump in 1/µ from above to below 1/µc. In order to
allow the system to reach the asymptotic regime more rapidly one performs a ‘gentle’ quench,
i.e. one starts from a configuration with density corresponding to a chemical potential closer to
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Figure 1. Calorimetric entropy as obtained by thermodynamic integration of compression
experiment data for three different annealing rates r . The smooth curve represents the equilibrium
entropy equation (5). The laboratory glass transition temperature, 1/µg(r), is the departure point of
the calorimetric entropy from the equilibrium entropy. The dashed curve shows the threshold value
of the entropy corresponding to the dynamic transition, sc = s(ρc) � 0.35. The circle located at
1/µK = 0.175 corresponds to the putative Kauzmann temperature presumably obtained from the
extrapolation of 1/µg(r) to very slow annealing (dotted curve).
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Figure 2. Time relaxation of the excess density
δρ(t) = (ρc − ρ(t))/(ρc − ρ(0)), after a
subcritical quench to µ = 2.2. The density of the
initial configuration is ρ(0) = 0.75. The straight
line is δρ ∼ t−z with z � 1/φ.

µc. Figure 2 shows the time relaxation of particle density after a subcritical quench to µ = 2.2,
starting from a random configuration with density ρ(0) = 0.75. We see that the system is not
able to equilibrate on the accessible timescales but instead approaches the threshold density
like a power law in time:

ρc − ρ(t) ∼ t−z (8)

where t is the time elapsed after the quench and where the exponent z � 1/φ (with φ defined
by (1)). The lack of equilibration is essentially due to a kinetic bottleneck: at high packing
density the number of paths leading to the equilibrium configurations is much smaller than
that leading elsewhere. Therefore, even if the dynamics is in principle always able to reach
equilibrium, configurations withρ � ρc are not effectively accessible. This dynamic behaviour
is qualitatively similar to that of mean-field glass models [39]. The roles played by the inverse
chemical potential and the inverse density are analogous to those played by temperature and
energy in the mean-field case, respectively. When quenched below Tc, mean-field spin-glass
models never equilibrate. Their energy relaxes to a dynamic threshold value Eth(T ) which is
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higher than the equilibrium one, and can be characterized as the value below which the phase
space breaks into disconnected components [39]. In our case, the moves allowed by the kinetic
constraints keep the configuration space of the system effectively connected only for ρ < ρc.
Of course, it is hard to establish from numerical simulations the existence and the nature of such
a dynamic transition in the KA model, and one is led to wonder about a possible system-size
dependence of these results. For a detailed discussion of finite-size effects in the KA model,
see [20]. We just mention here that a comparison with the backbone percolation problem shows
that the dependence of the critical threshold on the linear system sizeL cannot be faster than [20]

1 − ρc(L) ∼ 1/ log(logL). (9)

Therefore even if limL→∞ ρc(L) = 1, (i.e. if there is no dynamic transition), the length-scale
for which ρc ≈ 1 would be observable is not experimentally accessible.

It has been suggested that the power-law behaviour of the diffusion constant as a function
of the density is reminiscent of critical phenomena (and it should be related to the existence
of a diverging length) [36]. If this is the case, one would expect on the basis of universality
arguments that the exponent φ should not depend upon the details of the dynamics, while
the threshold density should show such a dependence. This conjecture has been verified for
systems on a face-centred cubic (FCC) lattice [36] and on a BCC lattice [49].

2.4. Aging and chaoticity

The power-law behaviour of the density relaxation implies that, after a subcritical quench, time-
translation invariance is broken. In fact, consider the two-time mean-squared displacement of
particles defined as

B(t, tw) = 1

3N

3∑
a=1

N∑
k=1

〈[rak (t + tw) − rak (tw)]
2〉 (10)

where rak (t) and rak (tw) are the coordinates (a = 1, 2, 3) of the same particles k at times t and
tw respectively. The average must be defined with some care, since particles may leave or enter
the system. We define it by averaging only over the particles which are present at both times.
At sufficiently large time separations the mean squared displacement would be given by

B(t, tw) =
∫ t+tw

tw

dτ D(ρ) (11)

where D(ρ) is the diffusion coefficient given by equation (1). Therefore, if ρc − ρ(t) ∼ t−1/φ

the diffusion coefficient in the glassy phase vanishes as

D(t) ∼ t−1 (12)

from which a logarithmic simple aging follows:

B(t, tw) ∼ log

(
1 +

t

tw

)
(13)

in good agreement with the numerical results [33]. This relation implies the weak-ergodicity
breaking property [39]:

lim
tw→∞ lim

t→∞ B(t, tw) = ∞. (14)

This means that, no matter how large tw is, the trajectory of the system wanders away from
any region of configuration space at sufficiently long time t . Further insight into the aging
dynamics is obtained by studying its ‘chaoticity’ property [39]. After aging for a time tw,
one duplicates the system and subsequently evolves the two copies (clones) with different
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Figure 3. Mean overlap Qtw (t) between two clones after a subcritical quench in the glassy
phase (µ = 2.2): the two clones are separated at time tw and evolve subsequently with different
realizations of noise. Qtw (t) always decreases to zero (the slower the larger tw), showing that the
trajectories of the clones in the configuration space always tend to diverge.

realizations of the thermal noise (corresponding to different sequences of random numbers in
the updating procedure of MC dynamics). The question is then whether or not the trajectories
diverge at an arbitrary large time. This is measured by the overlap function Qtw(t) defined
here as

Qtw(t) =
〈 ∑

i n
1
i (t)n

2
i (t) − Nρ1(t)ρ2(t)∑

i n
1
i (tw)n

2
i (tw) − Nρ1(tw)ρ2(tw)

〉
(15)

where the superscript a = 1, 2 denotes the two clones and the brackets denote the average
over different realizations of the randomness. Figure 3 reports the results for Qtw(t) for several
values of tw, showing that

lim
tw→∞ lim

t→∞ Qtw(t) = 0. (16)

In other words, no matter how large tw is, the two trajectories always become as far as possible
from each other in the configuration space. Thus, while the breakdown of time-translation
invariance seems to rule out the possibility of a thermodynamic description, the last two features
seem to suggest the existence of a form of ergodicity associated with the aging behaviour.

2.5. Fluctuation–dissipation effective temperature

A subtle consequence of mean-field aging dynamics is a peculiar pattern of violation of the
fluctuation–dissipation theorem (FDT) [39]. It allows the definition of a timescale-dependent
effective temperature Tdyn [40], which is the first signature of a hidden form of ergodicity
underlying the glassy phase [41–43].

In our case, the effective temperature can be defined by comparing the two-time mean-
square displacement B(t, tw) and the mobility χ(t, tw) between two widely separated times t

and tw [34]. The mobility is obtained by applying a random stirring force to the particles at
time tw after quenching the system into the glassy phase:

Hε = ε

3∑
a=1

N∑
k=1

f a
k rak (17)

where f a
k = ±1 independently for each coordinate a and particle k at position rak . The lin-

ear response regime is probed for small enough values of the perturbation strength ε. In the
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presence of the perturbation, a local elementary move which satisfies the kinetic constraints
is accepted with probability min[1, e−βε f ·δr], where f · δr = ±1 is the displacement in the
attempted move. (We write the temperature T = 1/β explicitly, though it is always understood
that T = 1.) The integrated response function is given by

κ(t, tw) = 1

3N

3∑
a=1

N∑
k=1

〈
f a
k �rak (t + tw)

〉
(18)

where �rak (t + tw) is the mean displacement at time t + tw from the configuration at time tw in
the presence of the perturbation. This quantity can be conveniently measured by considering
the difference between the displacements at time t + tw in the presence of a perturbation and in
its absence (while evolving the two systems with the same sequence of random numbers). The
integrated version of the generalized FDT [39] yields a relation between κ(t, tw) and B(t, tw):

κ(t, tw) = ε

2T

∫ B(t,tw)

0
X(B) dB. (19)

The fluctuation–dissipation ratio X(B) is a measure of the violation of FDT. If FDT holds,
X(B) = 1 and

κ(t, tw) = ε

2T
B(t, tw) (20)

so κ(t, tw) is a linear function of B(t, tw) with slope ε/2T . A deviation from this straight line
therefore indicates a failure of FDT. The way in which FDT breaks down plays a key role since
it can show the presence of an effective temperature for the slow modes associated with the
structural rearrangement. One observes two asymptotic regimes similar to those found in the
out-of-equilibrium dynamics of mean-field structural glasses: a short-time quasi-equilibrium
regime where FDT holds, and, at larger separation times, a regime in which a violation FDT with
a constant factorX � 0.79 occurs. These results appear clearly in the parametric plot of κ(t, tw)
versus B(t, tw) where the curve approaches the characteristic broken curve (see figure 4). A
similar violation pattern has been observed in the KA model on an FCC lattice [36], and in the
presence of gravity on a BCC lattice [48] (see figure 5). It is also interesting to consider the be-
haviour of a binary mixture of particles with two different kinetic constraints. In this case one
observes a purely dynamic gravity-driven phase separation where more constrained particles
segregate towards the top of the mixture [37]. Two different fluctuation–dissipation tempera-
tures appear in this regime, the smaller one being associated with the less constrained particles.

3. Edwards’ measure

Given the non-holonomic nature of kinetic constraints and the trivial Hamiltonian of the model,
one might wonder whether a statistical mechanics approach based on the calculation of some
restricted partition function would ever be able to predict some features of the glassy phase.
For example, at a given long time, when the system has reached a high packing density ρ(t),
one may wish to measure the structure factor g(r, ρ), or the value of the effective temperature
Tdyn(ρ).

Some years ago, in a granular matter context, Edwards proposed that one could reproduce
the observables measured in the stationary state of a tapping dynamic experiment by calculating
the value they take in the usual equilibrium distribution at the corresponding volume, energy etc
but restricting the sum to the blocked configurations defined as those in which every particle is
unable to move [44]. This Edwards measure leads immediately to the definition of an entropy
SEdw as the logarithm of the number of blocked configurations of given volume, energy etc,
and its corresponding density sEdw ≡ SEdw/N . Associated with this entropy are state variables
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Figure 4. Measuring the non-equilibrium fluctuation–dissipation relation in a zero-gravity
compaction experiment. Parametric plot of the mobility χ(t, tw) = 2 κ(t, tw)/ε versus the mean-
square displacement B(t, tw). The system is prepared in a random initial configuration with density
ρ = 0.75 and then a subcritical quench into the glassy phase at chemical potential µ = 2.2
(µc � 2.0) is performed. The perturbation (ε = 0.1) is applied at waiting time tw = 105. The
full line corresponds to the equilibrium FDT (slope T = 1). In the aging phase the nature of the
FDT violation allows one to define an effective temperature Tdyn (the slope of the dashed curve is
T −1

dyn � 0.79).
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Figure 5. Measuring the non-equilibrium fluctuation–dissipation relation in a compaction
experiment under gravity. Parametric plot of the mean-square displacement B(t, tw) versus
the conjugate response function χ(t, tw). The system is prepared in a random loose-packed
configuration, ρrlp � 0.707. The gravity temperature ratio is βg � 1.61. The waiting time after
which the random stirring force is turned on is tw = 214. The slope of the full line corresponds
to the equilibrium fluctuation–dissipation temperature (T = 1). The slope of the dashed line is
T −1

dyn � 0.22.

such as ‘compactivity’ X−1
Edw = (∂/∂V )SEdw(V ) and ‘temperature’ T −1

Edw = (∂/∂E)SEdw(E).
Mean-field glass theory predicts that the temperature TEdw, despite its different origin, matches
exactly the Tdyn obtained from the fluctuation–dissipation relation during the aging dynamics
at almost zero temperature (see [41–43] and references therein).

The nature of the KA model makes it a good candidate for testing Edwards’ hypothesis in
finite dimensions [45]. In this context, we consider a flat measure over blocked configurations
that have the density ρ(t) of the dynamic situation we wish to reproduce. This means that we



Canonical variations on the KA model 1465

have given up trying to predict the dynamic evolution of the density by methods other than
the dynamics itself. We therefore compute say the structure factor in all the possible blocked
configurations of density ρ(t), and calculate the average. Thus, the only input from dynamics
is ρ(t), apart from which the calculation is based on a statistical ensemble. That configurations
with low mobility should be relevant in a jammed situation is rather evident; the strong hypoth-
esis here is that the configurations reached dynamically are the typical ones of given density.

3.1. The auxiliary model

To construct the Edwards measure explicitly one has to devise a method for counting and calcu-
lating averages over blocked configurations [45]. The expectation values thus obtained can then
be compared with equilibrium values and with the results of the aging dynamics. This can be
done by means of an auxiliary model in which particles have energy equal to unity if the dynamic
rule of the KA model allows them to move, and to zero otherwise. The auxiliary Hamiltonian of
the KA model is therefore highly complicated, involving next-nearest-neighbour interactions
(and hence its thermodynamics is non-trivial). We can now introduce an auxiliary temperature
1/βaux associated with the auxiliary energy Eaux (equal to the number of particles that are able
to move) and perform simulated annealing at fixed number of particles: at low βaux all configu-
rations are sampled uniformly, while as βaux grows sampling is restricted to configurations with
a vanishing fraction of moving particles. Efficient sampling is achieved by means of non-local
moves (accepted with a standard Metropolis probability min {1, exp(−βaux�Eaux)}). In this
way, one obtains the equilibrium energy density of the auxiliary model, eaux(βaux, ρ), and its
entropy density, saux(βaux, ρ), by thermodynamic integration:

saux(βaux, ρ) = seq(ρ) + βaux eaux(βaux, ρ) −
∫ βaux

0
eaux(β, ρ) dβ. (21)

We set saux(0, ρ) = seq(ρ), since the limit βaux → 0 corresponds to the equilibrium measure.
The energy of the auxiliary model was computed in the range ρ ∈ [0.65, 0.95] with a step
in density �ρ = 0.005 and for βaux ∈ [0, 20] with a step �βaux = 0.1. In figure 6 we show
a subset of data concerning the energy and entropy density as obtained by thermodynamic
integration. It is clear from figure 6 that the limit of our interest corresponding to the Edwards
measure, βaux → ∞, is already approached for βaux � 5. To evaluate the observables within
the Edwards’ measure we now consider the limit βaux → ∞ of the observables computed in
the auxiliary model. The Edwards entropy is then obtained as

sEdw(ρ) ≡ lim
βaux→∞

s(βaux, ρ) = seq(ρ) −
∫ ∞

0
eaux(β, ρ) dβ (22)

since

lim
βaux→∞

βaux eaux(βaux, ρ) = 0. (23)

In figure 7 we plot the Edwards and the equilibrium entropy as a function of the particle
density. It is clear that the most typical blocked configurations (ρ � 0.75) are irrelevant as
far as the compaction dynamics is concerned. Since the relation between chemical potential,
temperature and entropy density at equilibrium is given by (4) and (5), the natural definition
for Edwards’ temperature is

T −1
Edw = − 1

µ

dsEdw

dρ
. (24)

At fixed density it can be rewritten, by using −βµ = dseq/dρ, as

TEdw(ρ)
dsEdw

dρ
= T (ρ)

dseq

dρ
. (25)
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Figure 6. Thermodynamic properties of the
auxiliary model. (a) Energy density eaux versus
inverse temperature βaux at different particle
densities ρ. (b) Entropy density saux as obtained
from thermodynamic integration of the energy
data.

The agreement between Tdyn(tw) obtained from the fluctuation–dissipation relation, and
TEdw(ρ) obtained from the blocked configurations for the density ρ = ρ(tw) at which the
dynamical measurement were made, is excellent. Similarly, the Edwards measure structure
function at a given density, gEdw(r, ρ), is obtained as

gEdw(r, ρ) = lim
βaux→∞

gaux(r, ρ, βaux). (26)

In figure 8 we plot the dynamical gdyn(r, ρ, t), the equilibrium geq(r, ρ) = ρ2 and the Edwards
gEdw(r, ρ) structure factors, for the same density ρ � 0.87. While geq(r, ρ) is flat, the system
has developed short-range correlations in the slow-annealing procedure, which seem to be
reproduced rather well by gEdw(r, ρ).

Is it possible to obtain the Edwards entropy from a structural characteristic (in an
experiment or in a simulation)? We suggest here a method which is based on the possibility of
expressing the excess entropy of a simple fluid in terms of multi-particle correlations [46,47].
In the ‘two-body’ approximation it reads

s(2)(ρ) = −2πρ
∫ ∞

0
[g(r, ρ) ln g(r, ρ) − g(r, ρ) + 1] r2 dr. (27)

If the Edwards hypothesis holds true, a straightforward generalization of the previous relation
would give a way to estimate the entropy of blocked configurations from measurements of the
structure function in aging, tapping or shearing experiments.
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temperature measured during the aging dynamic experiment of figure 4.
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Figure 8. Structure functions g(r) − ρ2 at density ρ � 0.87 computed with the equilibrium,
Edwards and dynamic measures. The three sets of data originate from independent MC simulations.
The dynamic structure function (circles) is obtained after a very slow compression by raising the
chemical potential from µ = 1 to 3 with a step of �µ = 0.01 every 104 MC sweeps; it is
measured in the centre of the box where the homogeneity of the system was checked. The Edwards
structure function (open squares) is obtained from the auxiliary model at βaux = 10. Although the
equilibrium value of g(r)− ρ2 is exactly zero, we also obtain it by a MC simulation (full squares)
in order to show that the difference in the short-distance behaviour is not an artifact of the numerical
simulation. The size of the typical error bar on dynamic data is shown at r = 3.

4. Mean-field dynamics

In this section we show how some of the results reported in section 2 can be understood in
terms of a non-linear diffusion model. We consider the sample as a slab, whose free surfaces
at z = ±L are in contact with the reservoir and therefore rapidly reach a density equal to the
equilibrium one. We then assume that within the sample, the particle density ρ(z, t) satisfies
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the following non-linear diffusion equation:

∂ρ

∂t
= ∂

∂z

[
Dφ(ρ)

∂ρ

∂z

]
(28)

with the boundary conditions ρ(±L) = ρR � ρc, and where ρ(z, t) � ρR for |z| < L and all
t . The diffusion coefficient is given by Dφ(ρ) = D0(1 +φ)(ρc −ρ)φ , where φ � 3.1 as found
by KA [20]. Changing the variable to y(z, t) = ρc − ρ(z, t), we obtain the equation

∂y

∂t
= D0(φ + 1)

[
φyφ−1

(
∂y

∂z

)2

+ yφ ∂
2y

∂z2

]
. (29)

In the low-density phase, ρR � ρc, the non-linearities of equation (29) are expected to
be irrelevant and the relaxation towards the equilibrium distribution should be exponential.
Linearizing equation (29) around the equilibrium state, ρeq(z, t) = ρR, one finds that the
characteristic relaxation time is

τ(ρR) ∼ (ρc − ρR)
−φ (30)

which as expected diverges as ρR → ρc with an exponent −φ. In the high-density phase,
ρR = ρc, the density of the edge layers closely approaches the critical threshold, and
hence slow relaxation and aging are expected. If one now looks for solutions of the form
y(z, t) = f (z)g(t), one obtains a power-law relaxation of the density with an exponent 1/φ,
g(t) ∼ t−1/φ as found in simulations (see figure 2), and a differential equation for the density
profile f (z):

f (z) = ∂

∂z
[f φ(z)f ′(z)] (31)

with the boundary conditions

f (±L) = 0. (32)

The asymptotic scale-invariant solution of the density profile is discussed in [33]. Here,
we present in figure 9 the time evolution of the density profile obtained from the numerical
integration of equation (28). The comparison with the profiles obtained in MC simulations
shows that the non-linear diffusion model reproduces the overall spatial distribution of the
particle density rather well. The deviations observed near the edges are a discretization/finite-
size effect, as the density of a single two-dimensional layer can be higher than that allowed by
the kinetic constraint. They therefore occur at high density and are expected to disappear in
the thermodynamic limit. As previously discussed the effect of a varying diffusion constant
implies that the mean-square displacement B(t, tw) has a logarithmic simple aging behaviour.
This is compatible with the ‘triangle relation’:

B(t, t ′) = B(t, s) + B(s, t ′) for t ′ < s < t (33)

which stems from the statistical independence of particle displacements over non-overlapping
time intervals. Note that the factorization property of the solution, y(z, t) = f (z)g(t), tells
us that the specific form of temporal correlations does not depend on the presence of a non-
homogeneous density profile.

It is a simple matter to generalize the non-linear diffusion model to the case when gravity
is present [49]. In this case two temporal scales appear: one associated with the diffusion
time τ1 ∝ L2, and the other one with the drift time τ2 ∝ L/γ , where γ = mg/kBT is the
inverse gravitational length. The asymptotic scaling analysis of the model shows that gravity
changes the dynamic relaxation exponent and the nature of aging behaviour. One finds that in
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Figure 9. Density profile ρ(z, t) versus z/L at MC time t = 103 (circle), t = 104 (square) and
t = 105 (diamond), after a quench at ρ = 0.88, starting from a random initial configuration with
density ρ = 0.75, for system size L = 64 with transverse surface 322. The continuous curves
are the curves obtained from the numerical integration of the diffusion equation; the upper curve
would correspond to a profile at the MC time t = 106. We have chosen the KA value of φ = 3.1
and ρc = 0.88.

the bottom layer of the box, the relaxation time diverges with an exponent φ − 2, while the
density relaxation still follows a power-law

ρc − ρ(z, t) ∼
(

z

φγ t

)1/(φ−1)

. (34)

In particular, to leading order in t and tw, the mean-square displacement goes like

B(t, tw) ∼ t1−µ
w − t1−µ. (35)

The exponent µ = φ/(φ − 1) corresponds to a super-aging regime (µ > 1) when φ > 1. A
similar scaling behaviour is observed in the simulation of the gravity-driven KA model [48].

4.1. Non-equilibrium stationary states

One might wonder what the effects of blocked configurations are when the system is driven
into a non-equilibrium stationary state by non-relaxational forces. A rather natural situation
that can be analytically investigated in the present context is that in which the system is
simultaneously in contact with two particle reservoirs and a stationary current flows through
the system. Consider then the system boundaries, located at z = ±L, in diffusive contact with
two reservoirs at different chemical potential µ±. The global effect of the reservoirs is to keep
the boundary densities at two different values ρ±

ρ(±L, t) = ρ± ∀t � 0. (36)

When ρ+ = ρ− < ρc, the characteristic relaxation time is finite and the system attains an
equilibrium state characterized by a flat profile. When ρ+ �= ρ− and ρ+, ρ− < ρc, the
relaxation time is still finite for any finite L, and the steady-state density profile is

ρc − ρ(z) = (L a+ − z a−)
1

1+φ (37)

where the constants a± are determined by the boundary condition (36),

a± = 1

2L

[
(ρc − ρ−)1+φ ± (ρc − ρ+)

1+φ
]
. (38)
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Figure 10. Density profile in a boundary-driven lattice glass coupled to two particle reservoirs at
density ρ+ = ρ(L) = 0.85 and ρ− = ρ(−L) = 0.75 (squares), with L = 160 and transverse
surface 202. The continuous smooth curve represents the analytic profile predicted by the diffusion
equation, equation (37) (with the KA value of φ = 3.1 and ρc = 0.88). Also shown, for
comparison, are the linear profile corresponding to a normal diffusion coefficient (dashed curve),
and the numerical simulation data obtained by removing the kinetic constraint (stars).

In figure 10 the density profile obtained in an MC simulation is compared with that predicted
by the anomalous diffusion equation using the value of ρc and φ found in [20]. The agreement
between the two is excellent. The small discrepancy observable near the higher-density edge is
a finite-size effect similar to that encountered before, and therefore is expected to disappear as
the thermodynamic limit L → ∞ is approached. In figure 10 we also show for comparison the
numerical density profile of the usual boundary-driven three-dimensional lattice gas (which is
simply obtained by removing the kinetic constraint), and that predicted by the normal diffusion
equation. These results suggest that the non-linear nature of the density profile close to the
threshold is essentially determined by the presence of blocked configurations induced by the
kinetic constraint.

The peculiar non-linear nature of the density profile has far-reaching consequences for the
transport properties of the model near the threshold. The particle current can be calculated as
J = D(ρ)∂zρ, and is therefore given by

J (ρ+, ρ−) = D0

2L

[
(ρc − ρ−)1+φ − (ρc − ρ+)

1+φ
]
. (39)

This expression has two interesting features: it is non-linear and does not depend only on
the single variable �ρ = ρ+ − ρ−. In the limit ρ± � ρc the density profile is linear, and
one correctly recovers Fick’s law J ∼ �ρ, in agreement with linear-response theory. At
high enough density, however, this is not the case and more interesting transport phenomena
emerge. In the non-linear regime one can show that equation (39) exhibits phenomena such
as rectification, negative resistance and hysteresis depending on the way the drive acts on the
boundary. An example is shown in figure 11 (for more details, see [51]).

5. Conclusions

In summary, when endowed with a mechanism of particle exchange with a reservoir, the KA
model qualitatively reproduces the corpus of mean-field glassy phenomenology, which is the
present paradigm of our understanding of the structural glass transition problem. The model
exhibits history dependence, hysteresis, power-law approach to the asymptotic state, physical
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Figure 11. Negative resistance. The particle
current J (ρ+, ρ−) is plotted versus the driving
force ρ+ − ρ− for different values of the ratio
δ = ρ−/ρ+ = 0.4, 0.5, 0.6, 0.7, 0.8 (from top to
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dotted curve represents Fick’s law, which is
recovered in the limit of small density gradient.

aging, chaoticity, fluctuation–dissipation effective temperature and, as recently shown, dy-
namic heterogeneities [50]. A phenomenological non-linear diffusion equation allows one to
derive analytically many of the results observed in numerical simulations. It also predicts in-
teresting transport phenomena in the non-equilibrium stationary regime, which could be tested
in more realistic models. In some respects these features might appear rather surprising since

(i) the model is non-mean-field and does not contain any quenched disorder or frustration in
its Hamiltonian,

(ii) the slowing down of the dynamics does not seem to be related to an underlying
thermodynamic transition,

(iii) blocked configurations do not have an a priori simple interpretation in terms of local
minima of some complex free-energy landscape and

(iv) the phase-space organization of blocked configurations is different from that found in
mean-field spin-glasses [50].

Several possible scenarios can be envisaged. We only mention that, if we exclude the
existence of a dynamic phase transition (on the basis of a nucleation argument) and a static
transition (on the grounds of irreducibility), one is led to accept that the glassy behaviour
observed in this model is a merely kinetic effect. This would mean that in the asymptotic limit
the system is described by the Gibbs measure (in this case trivial), while in a preasymptotic
limit (that observed in simulations) it would be described, due to a bizarre finite-time, finite-size
conspiracy, by the glassy mean-field scenario and the Edwards measure.

In spite of its simplicity the KA model still retains much of the enigmatic character of the
glass transition.
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